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A CRITICAL EXAMINATION OF A NUMERICAL FRACTURE DYNAMIC CODE
by

L. Hodulak, A.S. Kobayashi and A.F. Emery
ABSTRACT

After upgrading the energy dissipation algorithm, numerical experi-
ments were conducted to assess the reliability of the explicit dynamic
finite element code, HCRACK. Two dynamic fracture specimens, i.e., the
wedge-loaded rectangular DCB (RDCB) specimen and the wedge-loaded tapered
DCB (TDCB) specimen, which were studied experimentally by Kalthoff et al,
were then analyzed with this updated fracture dynamic code. Using the
experimentally determined dynamic fracture toughness, KID’ versus crack
velocity, é, relation, the RDCB -specimen was analyzed first by the "propa-
gation method" where good agreements between calculatgd and measured KID
versus a relations were observed. The calculated a versus time, t,
relation was then used as input data in the "generation method" where the
resultant KID were virtually identical to those obtained in the propaga-
tion method. Error analyses of the generation method were also made first
by using the experimentally determined a versus t relation and secondly by
artificially perturbing this relation.

A TDCB specimen was then analyzed with both the propagation and gen-
eration methods by using the KID versus é relation established for this
specimen and the measured a versus t relation, respectively. The
computed KID obtained by both methods were in good agreement with the
experimental results, showing that either approach can be used in analyzing
fracture.

KEYWORDS
Dynamic fracture, dynamic finite element analysis, dynamic fracture

toughness, crack arrest stress intensity factor.




INTRODUCTION

E For the past three years, two of the authors have used a two-dimension-

al elasto-dynamic finite element code, which was based on HONDO [1], to

; compute the dynamic stress intensity factor for a crack propagating with

: a prescribed velocity [2-5] by applying to each node a nodal force
sufficient to release the node. This numerical procedure was later modi-
fied to include a startup procedure for computing dynamic stress intensity
factor, dynamic energy release rate, fracture energy, kinetic energy and
strain energy at each increment of crack advance [6,7]. Also the impulse
stress waves generated by the instantaneous application of a nodal force
to model the release of a crack-tip node was reduced by varying the force
over the time necessary for the crack tip to advance one nodal distance.
Physically, this procedure models a more gradual transit of the crack-tip
between two adjacent fin{te element nodes and is similar to that developed
by Keegstra [8-10] with the exception that our restraining nodal force is
completely eliminated when the crack-tip reaches its adjacent node. Other
nodal force release mechanisms include those of Malluck and King [11] and
Rydholm, Fredriksson and Nilsson [12] with different postulated rates of
nodal force release. The dissipated energy during a crack extension based
on any of the above three nodal force release mechanism is then computed
from the nodal force versus nodal displacement relation during this incre-

mental crack extension. In general this nodal force versus nodal displace-

! ment relation is non-linear and is goverened by the dynamic state surround-

ing the propagating crack tip thus requiring the monitoring of nodal force
or nodal displacement or both at every incremental time in the dynamic
finite element analysis. Interestingly enough, recent studies showed that
**“_d the differences in the mechanism of nodal force release [13,14] caused
1ittle changes in the resultant dynamic stress intensity factor. It is
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thus of no surprise that good to excellent agreements were claimed by all

[6,11,12] when these three crack tip energy dissipation procedures for
computing the dynamic stress intensity factor was checked by analyzing
the Broberg problem [15].

The above procedure of computing dynamic stfess intensity factor for
a crack whose velocity is prescribed to be equal to measuredone in a dy-
namically fracturing specimen was termed "generation calculation" by
Kanninen [16,17] who also expressed reservations on the accuracy of this
numerical approach. The "propagation calculation" in contrast to the
"generation calculation" is based on an assumed dynamic fracture toughness,
KID’ versus crack velocity, é, relation which is then used to propagate
a crack [16-23].* The assumed KID versus a relation is considered correct
when the calculated crack propagation history coincides with the experi-
mental data, and the KID at crack arrest, if any, is considered to be the

crack arrest toughness, KI » sought by some in predicting fracture arrest

a
of a dynamically propagating crack.

While one can debate the merits of propagation versus generation cal-
culations, only one study which involved both propagation and generation
calculation using the same numerical algorithm [23] has been published to-
date. Since the 1imited study in Reference [23] did not provide a compre-
hensive error assessment of the two procedures, this paper will report

on our comparative studies using two Araldite B fracture specimens which

were analyzed by Kalthoff et al by the method of caustics [24,25].

* Note that Keegstra in References [8,9,10] used the propagation calcu-
lation to compute KID versus a relations in fracturing specimens.
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DYNAMIC FINITE ELEMENT ANALYSIS

In the previous studies cited above [6,26], the dynamic fracture dy-
namic code HCRACK was shown to be an efficient and inexpensive method for
simulating dynamic fracture problems. Numerical experiments proved that
reasonable numerical accuracy can be obtained by using coarse meshes of
conventional elements (see Figures 1 and 2) and a moderate number of time
steps, e.g., about 150 steps for crack propagation and subsequent arrest
in a RDCB specimen shown in Figure 1. Unlike the implicit dynamic finite
element codes used by others, however, it was difficult to accurately pre-
scribe the rate of nodal force release since the input nodal force would
not generally be in equilibrium with the dynamic state of stress in the
adjoining finite elements in this explicit finite element code. As a re-
sult, an in-depth study on the performance of our fracture dynamic code
was conducted for different crack tip force release rates, different cal-
culation procedures for the dynamic stress intensity factor, and different
finite element breakdown. A brief description of some of these findings
are presented in the following.

As mentioned above, the algorithm for artificially prescribing an in-
put nodal force at the crack tip for each time step for prescribed decrease
in the resultant residual nodal force in the dynamic code is not straight-
forward and often a complete release of the nodal force cannot be achieved
in the prescribed time period. The basis of the numerical method is to
define the force, Fni which must be applied to a node at time step n such
that the time variation of the stress follows the form shown on figure 3.
In an implicit code, application of Fn would result in the same calculated
force at the end of the time step. With the explicit code, however, the
calculated force at the end of the increment, Fno, will rarely be equal to

i

Fn . Accordingly, the force at the next time step Fnil must be adjusted

NP
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not only to compensate for the ervor, but also to yield the desired value
at the end of the time step. The simplified method used in [26] was re-

placed by the following equation and typical results are as shown in

figure 3.
: ) F.!
Vo) prescribed 2 J
Fn""l = Fn - Fnﬂ E jz=] 2n.j+'| (1)

At the beginning of the crack propagation history when the first crack
tip node is relased (see Figure 3), excellent agreement between the pre-
scribed (1inear decrease in this case) and actually achieved nodal forces
is noted while for the sixth node which was released later (see Figure 3),
some deviations between both nodal forces are noted. Initial static
equilibrium prior to crack propagation most 1ikely contribute the excellent
results in the former case.

Also nofeworthy is the recent study by Malluck and King [13] who
compared energy release rates for the two distinctly different functions

of F/F_ = [1-b/a73/2

and F/F_ = [1-b/a]'/%, where b is the distance between
hypothetical crack tip location and the released crack tip node and A is
the inter-nodal distance and F and Fo are the instantaneous and original
crack tip nodal forces, respectively. Their results showed no significant
differences in the calculated dynamic stress intensity factors for crack
speeds lower than 25 percent of the shear wave velocity, i.e. ¢ < .25 Cy-
Our use of a linearly decreasing nodal force, F/F0 = [T-b/a], with constant
crack velocity between the two adjoining finite element nodes is thus
Justified.

The dyrnamic stress intensity factor was computed directly by the

total strain energy released from an instantaneous balance of the total

energy of the entire specimen [7] as




G = 2{E, - E. ) / (2 n ~2) (2)

where En’ En+l are the total strain energies for crack lengths of a s
a4 respectively when the crack extended from node n to node n+1. The
dynamic stress intensity factor, KI’ was then computed from GI using

Freund's relation [24]. Alternatively the value of GI was computed by

energy dissipated at the released node as
m |4

where m is the number of time steps between nodes n and n+l, Uy and A Fi
are displacement and decrease of force at the released node n, respectively.
Figure 4, shows the dynamic fracture toughness, KID’ associated with
crack propagation and arrest in one of Kalthoff's RDCB specimens [24] com-
puted by both equations (2) and (3) using the "propagation method."
Although details of this analysis are described in the following section,
the results are shown in this section as an indication that little differ-
ence can be noted in the KID obtained by the two algorithms.
As shown in Figure 4, the forced 1inear decrease in the crack tip

nodal force improved the simulation of the smoothly propagating crack and

eliminated the spurious oscillations in dynamic stress intensity factor :

observed previously [2-5]. It is uncertain, however, to what extent this
smoothing procedure may hide the true oscillations of the dynamic stress
intensity factor eventually induced by the reflected stress waves which :
emanated from the running crack.

SPECIMENS AND MATERIAL DATA

The two specimens analyzed by the dynamic finite element code are
the weige-loaded, RDCB and TDCB specimens which were investigated experi-
mentally by Kalthoff et al [24,25]. Specimen geometries of these




Y

£
4
|
i
5

Araldite B specimens and their finite element idealizations can be seen
in Figures 1 and 2.

Although the rigid loading wedge between the two loading pins will
prevent any inward displacement of the loading pins, these pins are free
to leave the wedge and travel outwards. The resultant dynamic stress in-
tensity factors in the presence of separating pins could vary significant-
1¥ during crack propagation [26]. The smaller mass density and the two
orders of magnitude larger compliance of the Araldite B specimens in
comparison to the steel specimen studied in Reference [26] should have
reduced the additional input energy due to any possible separation of the
loading pins and thus constant loading pin displacement were prescribed
at the pin holes.

Material constants of Araldite B used for this dynamic finite element

analysis after [24] are modulus of elasticity E = 3.38 GPa. Poisson ratio

of v = 0.33 and mass density, p = 1047 kg/m3. The experimentally determined

dynamic fracture toughness KID’ versus crack velocity, é, relations used

in the propagation calculations of RDCB and TDCB specimens are both plotted
in Figure 5 [24,25] respectively. Crack length as a function of time used
in the "generation calculations" of the RDCB specimen was taken from Figure
5 in Reference [24] but is not reproduced in this paper.

For the dynamic crack initiation in the RDCB specimen, the dynamic
crack initiation stress intensity factor, KIQ’ as reported in Reference
[24], was used and the subsequent dynamic stress intensity factors were
computed from the energy released at the node adjacent to the reference
crack tip node except the set of KID data noted in Figure 4. Since an
experimentalily determined KIQ was not reported in Reference [25], a

statistically computed KIQ’ which was back calculated from the median of

e ——
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Kalthoff's measured oscillating KID values [25] after crack arrest, was
used in the analysis of the TDCB specimen.

RESULTS

RDCB Specimen

The first numerical analysis involved a propagation calculation for
the RDCB specimen of Figure 1 using the KID versus i relation of Figure 5
and a KIQ =2.32 MNm3/2. The resulting dynamic fracture toughness and
crack tip motion of this propagation calculation are shown in Figures 6
and 7, respectively. The "propagation" crack tip motion from Figure 7 was
then used as input data for the "generation" calculation. This result is
net plotted in Figure 6 since the Kip versus a relations obtained by both
the propagati-n and generation calculation were indistinguishable.

As an additional numerical experimentation, however, the measured
crack length, a, versus time, t, relation of Reference [24] was used as
input to the "generation" calculation and the resultant KID are also shown
in Figures 6 and 7. Despite the lack of complete agreement between the
two KID curves obtained by propagation and generqiion calculation, the
shapes of these two curves are very close. Although both KID curves agree
well with experimental data during the first half of dynamic crack propa-
gation as shown in Figure 7, a distinct difference is noted by a second

local maximum, which occurs in both propagation and generation calculations

prior to crack arrest, but which does not occur in the experimental results.

The similarity between the propagation and generation KID curves is more
apparent in Figure 8 where the second maxima in the two calculations occur
at the same time. The higher KID values in the generation calculation at
lower measured crack velocities during much of the crack propagationwill re-

sult in a general shift of two KID versus a relation in Figure 5.

-
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Figure 6 also shows that the computed crack jump distance is 4%
shorter of the measured one in the propagation calculation but by defini-
tion is equal to measured distance in the generation calculation. Although
the propagation calculation is terminated when the computed dynamic stress
intensity factor falls below the minimum KID value in Figure 5, the gener-
ation calculation is continued up to the prescribed crack tip length and
crack arrest time. Significantly lower dynamic stress intensity at the
instant of crack arrest is noted.

The sensitivity of the dynamic stress intensity factor, which is cal-
culated by the generation method, to the instantaneous crack velocity is
further demonstrated in Figure 8. In order to assess the sensitivity of
KID obtained by the generation method to the input data, a numerical experi-
ment was conducted by artificially perturbing the smooth experimental
curve of the crack tip motion in Figure 8. The result was a severely
perturbed KID also shown in Figure 9, where discrete increases and de-
creases in crack velocities are followed by local minima and maxima of
KID respectively.

TDCB_Specimen

Figure 9 shows the KID as a function of a computed by the propagation
method, using the KID versuslé relation of Figure 5 and by the generation
method using experimentally determined a versus t relations for the TDCB
specimen together with experimental data from Reference [25]. A second
maximum, which resembles that found previously in the RDCB specimen, in
KID can be observed. The computed crack jump distance obtained by the
propagation method is shorter than the experimental one by 12%. In the
propagation calculation the computed KID increased again to a value
approaching experimental KIDaftertheinitialcrackarrest. Subsequently

computed KID oscillated around the few experimental points.
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Figure 10 shows the KID versus t relations obtained by both propagation
and generation calculations. Although the two calculated KID are in
excellent agreement with each other except for the initial phase of crack
propagation in this TDCB specimen, the calculated KID are lower than the
measured KID just prior to and after crack arrest. Previous experience
with steel TDCB specimens [4,5,26] indicate that this small underestimate
could be attributed to the possihlc separation of the loading pins from
the loading wedge during crack propagation.

CONCLUSIONS

The results of the present and of the previous studies using HONDO II
show that the dynamic stress intensity factor for a crack propagating in
a finite two-dimensional body can be computed relatively inexpensively with
an accuracy sufficient for many practical purposes. Very close agreements
between the KID obtained by the generation and by the propagation calcula-
tions should dispel the reservations [16,17] about this dynamic fracture
algorithm.

When used in conjunction with measured crack position versus time
data, the generation method with proper care can be used to accurately
calculate the dynamic stress intensity factor during the fast crack propa-
gation and crack arrest.

On the other hand the uncertainty in the KID versus §_re1ations,
particularly in the region of very low velocities together with limitation
in the finite element modeling of dynamic crack propagation offers little
chance for simulating the crack propagation and crack arrest event by the
propagation method when the dynamic stress intensity factor oscillates in
a narrow range about the crack arrest stress intensity factor as shown by some

experimental results with the single edged notch specimens reported in [25].




R ——— ‘ —— ‘ o A A e - a

1

DISCUSSION

It has been a common practice by all, including the authors, to
verify their fracture dynamic code by analyzing the Broberg problem [15]
for which the dynamic solution is available. Good agreements in these
studies cannot be construed as verification of numerical solutions gener-
ated for cracks propagating in finite specimens composed of real materials.
! The discrepancies between the computed and the experimentally determined

KID-values shown in Figures 6 and 9 could have arisen from the viscous

damping in Araldite B which was not modeled in the elasto-dynamic analyses
described in this paper. A study of the time-dependent energy balance
during crack propagation and arrest suggests that the consistently appear-
ing second maxima in the calculated KID-curves are real phenomena based on
elastic analyses. It is interesting to note that the limited experimental
Kip versus a relation obtained for RDCB specimens machined from high

strength steel [25] is in qualitative agreement with our elastic analysis

of the RDCB specimen.
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